MOUSE DATA COLLECTION AND CALIBRATION

STEPHEN PITHOUSE

CE LAST TIME..

- ING WHEEL ENCODER DATA ALONE TO TRACE THE PATH OF THE
- OLLECTED DATA, BUT NOT YET USED IT TO OPTIMISE PERFORMANCE IN ALITY
- AS PROVED USEFUL IN OTHER WAYS...
- Can calculate distance around the track
- CAN CALCULATE AVERAGE SPEED FOR A LAP
 - Used in testing to optimise speed profiles
 - CAN VARY THE TRACK SHAPE AND DETERMINE HOW LAYOUTS AFFECT THE PERFORMANCE

IS HAVE A LOOK AT ANOTHER LAYOUT...

TA COLLECTED FROM TECHFEST 2016

Collected:

- k length: 11.5m
- time: 12.24 seconds
- rox. speed: 0.94m/s

Theoretical improvement with optimised straights alone: Lap time: **8.15s** – with modest 1.7m/s straight line speed

NG THE DATA...

COLLECTING DATA IS THE EASY BIT!

- Using the data in a meaningful way is more challenging
- Simply replaying the lap using custom speed profiles for the current track type would not work due t wheel slip and would only get worse over time

ITEND TO USE 'REALTIME' ADJUSTMENT - DETECT WHEN DRIVING STRAIGHT, THEN USE STRAIGHT PROFILE FOR ISTANCE DETERMINED BY PREVIOUS LAP.

SICALLY COLLECTING DATA					A	Power-on			
						Te	st Mode Encoder	Run mode Main robo	
	Get Po	orts ~	Left: Right:				test	code	
		Send	Record to CSV Test Encoders Motor speed test				Motor speed test		
			Flash sensors Sensor values Wheel revolution				Sensor test		
	Disconnect Connected?	Clear History Close					•••		

Graph showing conversion from raw data to distance using lookup table generated in frontCalib function

ZE SOLVER FRONT SENSOR

Graph showing motor speed for given PWM value

LLECTING MOTOR DATA

NG 'KNOWN' UNITS

Converting to **SI** units – or any unit which is a known quantity such as distance or speed, it is Ch easier to achieve desired movement and debug

We 3 robots with different drivetrains for development, these can run exactly the same code a 2 code, simply by changing a 'params' file and entering wheel diameter, spacing and motor 20 - 45 determined by previous graph

Speed vs. time

ED PROFILES

Distance vs. time

Speed vs. distance

FA COLLECTED WHEN FOLLOWING A SPEED PROFILE

