

Mouse Emulation

Dry-Running Mouse Code and World Simulation

Rob Probin
Minos, April 2017

Concept

● Test as much as practical on a PC

● Allow testing on both PC and on the mouse

– With the same mouse code

Why?

Mouse development can be slow!
● Time to download new software

● Getting the mouse into a position to test

● Test runs

● Batteries finite

● Tools & Visualisation poor

● Difficult to get exact reproducibility

● Eliminating basic logic problems can be difficult

BUT Still need testing in a real maze

What is practical?

● Time creating simulators vs. time on mouse

– Few MCU / MPU have accurate on-chip peripheral
simulators

– Mouse specific hardware – write simulator?

– Real world physics - tricky

– Mouse specific parameters – unknown
● Without a lot of work
● Masters-level project?

What do we want to?

● Emulate a run-time environment for the mouse
code to run

– successfully in a simulation of the world

● Simulate the world accurately enough to allow
the mouse code (fragment) to function

– Be tested within confined limited parameters

– With sufficient detail based on the purpose of the
simulation

Areas to Consider Testing

● Maze solver algorithm testing

● High level control

● Low level control (I/O, etc.)

● Physics

– Basic stepped motion / discrete position

– Real position

– Acceleration, etc.

– Characterising a mouse vs. estimated simulation?

● Auxiliary

– e.g. battery usage based on activity, etc.

Generic Architecture

Test
User Interface

World
Simulation

Mouse Code
Fragment

Execution
Environment

Expected APIs
(or hardware

emulation)

Other things to consider

● Text display?

● Graphic display?

● Assembler mouse

– Emulator?

– vs. high-level mice: C, C++, BASIC, Python, etc.
● (Cross compile or native running)

● Time…

Real-time?

● Good, but not essential?

– Generally simulators don't need to be real-time

– Emulators should be real-time?

– Obviously time inside the simulator should be consistent, at least for some
purposes!

– Not sure … implementation … computer time vs. synthetic time

– Computer time might give us reproducibility problems (if we are not careful)
● Some network games suffer with a similar problem when running multiple sims

● Rewind time? Slow time? Forward/Back?

– Reversible functions?

– Repeatable function?

– Accurate step-by-step logging

Retro Fitting or Design for test?

● Retro Fitting:

– Most likely case for us

– Can alter mouse code slightly?

– Is separation of concerns possible
● to test less than everything?

– Not ideal – might want to refactor code

● Designed for test:

– Need to think about this!

– Proper abstractions between layers

– Low coupling

– Allow test stubs to be inserted (by pointer or by compilation)

My Simulator – Mk 1

● Flood-fill maze solver testing

● Visual inspection of results, mostly

● Some automatic – e.g. failed to solve

● Various 16x16 and 5x5 mazes

My Simulator – Mk 2

● Text output

– from mouse and from simulator

● Keyboard input

● Discrete cell step

● Basic high level code

● No I/O

– Emulated serial link between the two MCUs

● No need for real-time (mostly)

● Very slight code change

● Supports different mazes

My Simulator – Mk 3
(in progress)

● Graphical output

– LEDs, Maze & Mouse (in progress)

● GUI buttons

● Floating-point cell step (in progress)

● Basic high level code and some low level code

● No I/O yet

– Emulated serial link between the two MCUs

● Based on text simulator

● Some code changes to pass GUI instance to Text

Questions? Comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

