ORANGE MOUSE

The development of a multi-event schools' micromouse for 2018 by Bernard Grabowski and Duncan Louttit

Drag Race

This event features in both the UK Schools competition and the IET Robot Triathlon.

- There is a traffic light or countdown start.
- The mouse must travel 6m following a white line.
- The mouse must stop before the end of the 7.2m track.

Line Follower

This event features in both the UK Schools competition and the IET Robot Triathlon.

- The mouse must follow a white line.
- The mouse must travel in the direction of the arrow.
- The mouse must start and stop between marked lines.

Non-Contact Wall Follower

This event features in the UK Schools competition.

- The mouse must follow the left hand wall.
- The mouse must travel to the maze centre autonomously without touching the walls.

Time Trial

This event features in the IET Robot Triathlon.

 The mouse must follow the left hand wall for the standard course.
 The mouse must travel a figure-ofeight route for the advanced course.

The Printed Circuit Boards

Line Follower Configuration

Line Follower Underside

Drag Race Configuration

Wall Follower Configuration

Advanced Time Trial Configuration

Future Development? Maze Solver Configuration

Sub-Systems

When designing the Orange Mouse decisions had to be taken in the selection of:

Battery
Motors
Odometry
Tyres

Sensors
Connectors
Programming

Battery Selection

When choosing the Orange Mouse battery the age of the children making it was an important factor.

 Alkaline 9V
 LiPo 9V
 NiMH 8.4V
 LiPo 11.1V

 46g
 26g
 31g
 23g

Motor Selection

In order to comply with the IET Triathlon rules the motor had to be an N20 type Micro Metal Gearmotor. We found a cheap source on the Pimoroni website.

Odometry

We needed odometry on at least one wheel to measure the distance travelled in the drag race.

The extended back shaft on the gearmotor gave us a very neat solution.

The commercial parts for the optical quadrature PCB were more expensive than the motor!

Duncan produced a simpler design which we used in Orange Mouse

Motor Control Circuit

Bidirectional speed control circuit from TCA0372 Power Operational Amplifier datasheet.

Wheels

The most important factors here were gear ratio, diameter and grip.

- Tests showed that a 20:1 gearbox and 32mm diameter wheels were well matched.
- We had successfully used balloon rubber tyres in previous designs.
- We found that a layer of foam rubber below the tyre improved the grip.

Wheel Making Kit

Applying the foam

Stretching the balloon tyre

Fitting the tyre

The finished wheel

Wall Follower Sensors

TSL260R, TSL261R, TSL262R INFRARED LIGHT-TO-VOLTAGE OPTICAL SENSORS

TAOS049C -NOVEMBER 2005

- Integral Visible Light Cutoff Filter
- Monolithic Silicon IC Containing Photodiode, Operational Amplifier, and Feedback Components
- Converts Light Intensity to a Voltage
- High Irradiance Responsivity, Typically 111 mV/(μW/cm²) at λ_p = 940 nm (TSL260R)
- Compact 3-Lead Plastic Package
- Single Voltage Supply Operation
- Low Dark (Offset) Voltage....10mV Max
- Low Supply Current.....1.1 mA Typical
- Wide Supply-Voltage Range.... 2.7 V to 5.5 V
- Replacements for TSL260, TSL261, and TSL262
- RoHS Compliant (-LF Package Only)

Wall Follower Sensors Round Infrared LED Lamp

Features:

- Standard 5mm Package
- High Radiant Intensity
- Low Forward Voltage

Maximum Ratings at Ta=25°C

Reverse Voltage (<100 A)	: 5V
D.C. Forward Current	: 50mA
Pulse Current (Pulse Width of 0.1ms, 1/10 Duty Cycle)	: 200mA
Operating Temperature Range	: -25°C to +85°C
Storage Temperature Range	: -40°C to +100°C
Soldering Temperature Dip Soldering	: 260°C for 5 secs
Soldering Temperature Hand Soldering	: 350°C for 3 secs

Electrical & Optical Characteristics at Ta=25°C

Chip		Lens V Colour	Dominant Wavelength	Radiant Intensity (mW) at 20mA		Forward Voltage (V) at 20mA		Viewing Angle 2e ^{1/2}	
Material	Emitted Colour	Brightness		(nm) at 20mA	Min.	Тур.	Тур.	Max.	(deg)
A1GaAs/GaAs	InfraRed	-	Water Clear	940	7	15	1.25	1.5	10

Line Follower Sensors

FAIRCHILD

SEMICONDUCTOR

QRD1113 / QRD1114 Reflective Object Sensor

Features

- · Phototransistor Output
- No-Contact Surface Sensing
- · Unfocused for Sensing Diffused Surfaces
- Compact Package
- Daylight Filter on sensor

Description

The QRD1113 and QRD1114 reflective sensors consist of an infrared emitting diode and an NPN silicon phototransistor mounted side by side in a black plastic housing. The on-axis radiation of the emitter and the on-axis response of the detector are both perpendicular to the face of the QRD1113 and QRD1114. The phototransistor responds to radiation emitted from the diode only when a reflective object or surface is in the field of view of the detector.

PIN 1. Collector PIN 3. Anode PIN 2. Emitter PIN 4. Cathode

June 2013

Connectors

JST Plugs and sockets 1.5mm pitch

Programming

- □ The Orange Mouse uses a PIC Microcontroller.
- □ It is programmed in Proton Basic.
- The program is compiled into assembler code and downloaded using PicKit 2 serial programmer.
- Users do not write the program but have access to the parameters needed to test and tune their mice using a custom programming box.

Testing and Tuning

Wall Following Technique

- Read the left sensor.
- Prioritise left (anticlockwise) turns.
- □ Read the forward sensor.
- If a wall is detected ahead turn clockwise.
- Otherwise follow the left hand wall.

Line Following Technique

The Line Position from four Analogue Sensor Readings is calculated using the Weighted Average Method:

0 x Sensor1 + 1000 x Sensor2 + 2000 x Sensor3 + 3000 x Sensor4

Sensor1 + Sensor2 + Sensor3 + Sensor4

Line Following Technique

The Line Position from four Analogue Sensor Readings is calculated using the Weighted Average Method:

