DESIGN OF AN AUTONOMOUS HALF-SIZE MICROMOUSE ROBOT

Authors:

- Balázs Göntér
- Ádám Kolozsvári
- Gergely Sántha

Supervisor: Dr. Péter Korondi

THE COMPETITION

- Normalsize 1970
- Halfsize 2009
- Halfsize MOGI 2015
- Complexity mechatronics
 - Well-working powertrain
 - Reliable electronics
 - Maze solver algorithm
 - Motion control implemented on a microcontroller

FIRST GENERATION ELECTRONICS

- Mechanics: MOGI mouse
- Modular system
- Homemade PCB
 - Fironing method
 - Etching, drilling and self-made 🗸
- Working regulation.
- Both mechanical and electrical problems

RECONSTRUCTING THE MAZE

Coordinate-systems

- Relative
- Absolute
- Storing the cell information

								뭐레
7.	6.	5.	4.	3.	2.	1.	0.	
West (Y-)	North (X+)	East Y(+)	South (X-)	Count of visits				

PATHFINDING ALGORITHMS

- Type of rounds
 - Search run
 - Speed run
- Algorithms
 - Without memory (random, wall follower)
 - Modified Flood fill
 - Shortest path (not certainly the fastest)
 - Low computational requirements

Sum:	19 ms
Required time to arrive to a cell	16 ms
Required time for initialization:	3 ms

DATA PROCESSING, VISUALIZATION

VISA resource name?

- Communication
- LabView program
 - State-machine
 - Master/Slave configuration
- Data structures defined
 - Sensor data (e.g. | x511 |)
 - Flood fill values (e.g. | f495@11@|)
 - Wall information (e.g. | m15@12@1001@|)
- Real-time visualization of the discovered maze
- Map generation for test purposes

×

read buffer

2-0

elements in gueue

Serial Settings Number of Bytes at Serial Por

2 0

5-0

IMPLEMENTATION OF CONTROL

- 3-stage cascade controller
- Timings: 6.5 ms, 3.8 ms, 1 ms

PID CONTROL

- Position control
- Parallel PD structure
- One for each side
- Gain parameters have been tuned empirically

VELOCITY CONTROL

- Not a real velocity control
- Rather it's the control of the relative position
- Simplified sliding mode control
 - Driving straight:

maximális sebesség

X

- Measuring the distance from the wall
- In-place turns:
 - Same angular speed but opposite direction

NAVIGATION

- Storing absolute position
 - Coordinates
 - Direction
- Sensing surrounding walls
- Map storing for pathfinder algorithms
- Storing wall information for adjacent cells too
- Utilizing previously known wall data
- Decision on the next step

ADAPTIVITY AND ERROR CORRECTION

- Before start:
 - Saving the initial IR sensor readings corresponding to the left and right wall distances as reference
 - Loading previously saved map (if there is any)
 - Calibrating the IMU
- During the run:
 - Keeping proper distance from the walls in case of stopping in the middle of the cell
 - Maintaining left and right distances

PROBLEMS WE EXPERIENCED

- Slipping of the wheels
- Inhomogeneous, varying lighting conditions
- Misalignment of the wheels from the symmetry plane

PROBLEMS WE EXPERIENCED

- Sticking drivetrain
- Speed difference between the 2 sides
 - Significantly different and varying friction coefficients

Velocities vs PWM

POSSIBLE FURTHER DEVELOPMENTS

- More accurate position determination
 - Fusing available sensor data with kinematical model
 - Online recalibration of the IR sensors
- Better configurability
- Dynamic turning
- Enhancing pathfinding algorithm for diagonal runs (time based)
- Hardware improvements

THANK YOU FOR YOUR ATTENTION! FOR MORE INFORMATION FEEL FREE TO WRITE US: GONTER.BALAZS@GMAIL.COM