EduMouse
The Trainer from Taiwan

Inexpensive Training Robot

* Where can you save money making a robot like a
micromouse?

— PCB

— Components
— Peripherals
— Sensors

— Batteries

— Wheels

— Mechanicals
— Motors

— Odometry

EduMouse

Encoder
Infrared LED

Motor driver

EEPROM

Buck converter

from EduMouse documentation - Lunghua University, Taiwan

Harrisc

EduMouse - Control

v Use angular command to correct attitude errors

v~ 1ms control period;

0 | Integrator per PD Controller
digital Gain Kp1, Kd1
@t | Integrator & PD Controller

digital Gain Kp2, Kd2

from EduMouse documentation - Lunghua University, Taiwan

The controller system for EduMouse is common to any number of differentially-
steered wheeled, mobile robots

Thus, the results are applicable to a wide variety of physical platforms

Cheap motors

* One motor for D5 cost the same as EduMouse

* But:
— Possible variation in parameters.
— May be inefficient.
— Mounted examples need 0.6V to get moving.
— Others may need 1.5V or more.
— Cogging effects due to construction
— Torque Ripple in operation
— No encoder

Motors are one of the most significant ways to achieve cost savings in a micromouse.

There are some potential pitfalls to consider but these are not generally
overwhelming.

Low Cost Encoders

* Magnetic encoders (AS5045 etc)

— f£12 each

— Careful setup

— good resolution
* Optical Reflectors

— £0.20-£0.50 each

— Easy setup

— Poor resolution
* Edumouse encoders generate 24 counts per wheel rotation.
Wheel diameter approximately 25mm.
Left and right wheels averaged for position.
Thus, resolution is approximately 1.6mm
Or, about 112 steps per cell in the maze.
1 step per ms implies 1600mm/s

Odometry is the key to everything.
The robot must know where it is on the ground.

A gyro can take care of all rotational movement but forward motion cannot be done
solely with inertial measurement.

The better the encoders are, the more they will cost.
What can we achieve with the lowest possible cost?

(Note that we could use just one reflector per wheel and forego quadrature - see
Kojimouse7)

EduMouse - encoders

v 6x4 =24 ppr

Gear and encoder wheel (6 holes)

from EduMouse documentation - Lunghua University, Taiwan

Effect of low resolution
odometry on controller

* As commanded position increases, mouse

appears not to move

* Controller error grows

* Motor drive increases

* Followed by a jump in the apparent position

* Controller error now negative

* Motor drive reverses polarity.

There are some significant issues relating to the use of very low resolution encoders.

Even if overall positional accuracy is adequate, building a controller to make use of
these encoders can be a challenge.

Position measurement from encoders

makeMove(&fwd, 750, 1000, 0, 5000)

Distance (mm)
Speed (mm/s)
PWM (counts)

Using encoders only, the recorded position jumps in large steps that are not
synchronous with the controller time interval

Encoder feedback only

makeMove(&fwd, 750, 1000, 0, 5000)

Speed (mm/s)
PWM (counts)

Distance (mm)

Minos 2018 Peter Harrison

1 20000

-20000

10

The most simple, naive approach is a horrible mess.

The robot will make the move but its accuracy will be poor and the wild reversals in

the PWM drive put a lot of strain on the drivetrain.

And it sounds like a bucket of nails while it moves.

10

Estimating Position

* Overall positional accuracy probably
acceptable at +/- 2mm or so.

* System needs a higher resolution estimate of
position for smoother control.

* Kojima (Japan, Kojimouse) uses averaging of
encoder and accelerometer readings:

v = [encoders speed average in the last 100ms]
+ [accelerometer integral in the last 50ms]

Kojimouse7 was one of the first to use very low resolution encoders.

A centrally- mounted accelerometer provided information to augment the encoder
data.

No quadrature here. Direction is implied by the profiler and the output from the
accelerometer.

Averaging is not as expensive as you might think since the data is held in circular
buffers.

The implementation is simple but a little subtle.

11

http://kojimousenote.blogspot.co.uk/2012/05/velocity-measurement-with-kojimouse7.html

Photo reflector
Acceleration sensor

(located on the center of mouse)

Minos 2018 Peter Harrisor 12

12

Estimate speed as average of
encoder speeds over 64ms

makeMove(&fwd, 750, 1000, 0, 5000)

.....

Averaging the encoders alone effectively low-pass filters the data giving significant
lag and rounding of sharp corners.

13

Also integrate the accelerometer
over 32 ms

makeMove(&fwd, 750, 1000, 0, 5000)

The accelerometer is very noisy but can be integrated over a short period to get an
estimate of velocity.

The acceleration phase is clearly visible.
Constant velocity produces no accelerometer output.

Since the accelerometer is integrated, it is also low-pass filtered so there is no sharp
transition from accelerating to constant speed.

14

Combine both for a better speed estimate

makeMove(&fwd, 750, 1000, 0, 5000)

If the accelerometer estimate of velocity is simply added to the encoder average, the
overall estimate is greatly improved.

There is a tradeoff between longer averaging periods giving better estimates and
shorter averages producing more timely results.

| do not know where the optimum level might lie.

15

Position Estimate by Kojima's method

makeMove(&fwd, 750, 1000, 0, 5000)

»»»»»»

Distance (mm)
Speed (mm/s)
PWM (counts)

Viwed in greater detail, it is clear that the averaging approach provides a continuous
position estimate that is a good fit for the encoder data.

16

EduMouse State Observer

* EduMouse has a position estimation method
based on a state space model of the mouse.

* Ask me after class

State space analysis is another way of looking at systems and it has numerous
advantages of more classical methods.

State space observers can be used to estimate system properties where there is
imperfect information available.

| do not know how to do this from first principles but | can recognise and implement
a result when | see one.

A more complete description can be found in:

J.H. Su, C. S. Lee and C. W. Chen, "Sensor fusion algorithms for encoder resolution
enhancement in educational mobile robots," 2016 International Conference on
Advanced Robotics and Intelligent Systems (ARIS), Taipei, 2016, pp. 1-5.

17

State Observer Implementation

Thankfully, it is easy to implement:

Only two constants define the behaviour

These are easy to determine

Just three lines of (floating point) code

// position and velocity estimates from error and imu

float positionError = encoderPosition - positionEstimate;
positionEstimate += (Kv * positionError) + velocityEstimate;
velocityEstimate += (Kp * positionError) + imu.acceleration;

And this is the resulting implementation.
Only two numbers need to be selected and they can be determined by observation.
The natural frequency sets the response bandwidth.

The damping ratio sets the response time and overshoot as it does for any second
order system.

The units here are system dependent and | need to work through the maths a little to
find appropriate values in real units

18

State Observer position estimate

makeMove(&fwd, 750, 1000, 0, 5000)

Distance (mm)
Speed (mm/s)
PWM (counts)

The observer position estimate also provides a nice, continuous fit to the encoder
data.

Purely by visual inspection, it looks to be a better fit than the averager used by
Kojima.

Simple Move Forward

makeMove(&fwd, 750, 1000, 0, 5000)

A simple move shows how the observer position estimate lets us make a pretty good
control system.

The PWM drive is noisy as might be expected by the effect of a noisy accelerometer
and only having an estimate of position

Also, | think there is a significant mechanical contribution from the motor and drive
train.

Some tests indicate the PWM signal has strong frequency components corresponding
to mechanical features in the drivetrain.

20

Position error (encoder-observer)

makeMove(&fwd, 750, 1000, 0, 5000)

Distance (mm * 10)

The error between the observer position estimate and the position reported by the
encoders is small throughout the move but subject to quite a lot of fluctuation.

There is always an error though. Without it, there would be no drive signal to the
motors.

Position error (setpoint-observer)

makeMove(&fwd, 750, 1000, 0, 5000)

Distance (mm)

Speed (mm/s)

PWM (counts)
(mm* 10)

Most of the motor drive comes from the controller trying to reduce the error
between the commanded position and the current estimate.

Unless there is an unfeasibly high controller gain, large errors are needed to generate
large PWM outputs.

Remember that the motors do not even move until the PWM is up to about 10%

22

Effect of Accelerometer

* Accelerometer output very noisy.

* Integrating accelerometer gives velocity.

* At constant velocity, accelerometer reads zero.
* Thus, no contribution to observer estimate

* Mouse and surface tilt may cause inaccuracies
* Accelerometer should be centrally mounted

* Smooth turns are at constant speed so
compensation should be easy

Without the Accelerometer, the observer still manages to provide a position
estimate.

| believe it acts like a low pass filter when the accelerometer input is zero.

That is the circumstance when the mouse is off the ground or moving at constant
velocity.

Feed forward is important

* Motor PWM throughout a profile needs large
controller outputs for acceleration and speed.

* Without feed forward, the controller must
provide these

* Controller can only give large outputs if there
are large errors

* Feed forward provides the large outputs
predictively

* Controller need only handle small errors.

Since the controller needs large errors to get the high PWM drive levels needed,
some way must be found to provide most of the drive predictively.

It is easy to see that a constant PWM would result in constant speed proportional to
that drive.

Acceleration needs an additional boost to drive accelerating current through the
motors.

There is a constant offset value needed to overcome losses and inefficiency in the
drive.

If we can provide the right PWM values as a feedforward component, the controller
should only have to make small adjustments

24

Tuned State Observer
without Feed Forward

makeMove(&fwd, 750, 1000, 0, 5000)

,,,,,,

mmmmmmm

Without feed forward, it is clear that the error must grow before there is enough
drive.

This creates lag in the response and will probably cause errors in the final position.
and/or speed.

25

Tuned State Observer
with Feed Forward

makeMove(&fwd, 750, 1000, 0, 5000)

Distance (mm)

Speed (mm/s)

PWM (counts)
>l

By providing a suitable feed forward component, the robot will probably complete

the move even with the controller disabled.

The controller is now only having to provide small amounts of corrective action as the

encoders and estimator interact.

Evidence that the feed forward is correct is the observation that the average

controller output is zero throughout the move.

(note that the behaviour at the end of the move is caused by not driving the wheels

to zero long enough to overcome inertia)

26

Other Methods

Kalman Filter for encoders plus IMU
Used by Ng Beng Kiat
Much more modelling and maths

Not definitely better results

The Kalman filter is very popular. It will adjust the gains as the system behaviour
changes so that the resulting estimate is always as good as possible

It is also frequently misapplied and this may not even be the best place to use it.

Worse, it requires a greater understanding of the maths behind the process. It is not
a simple case of plugging a few numbers into a couple of lines of code.

There is also some evidence that the Kalman filter will not produce any significant
benefit over the State Observer approach:

J.H.Su, C. S. Lee and C. W. Chen, "Sensor fusion algorithms for encoder resolution
enhancement in educational mobile robots," 2016 International Conference on
Advanced Robotics and Intelligent Systems (ARIS), Taipei, 2016, pp. 1-5.

27

THANK YOU

28

