
Why not make it go faster?
Stephen Pithouse

Disclaimer – I may have overlooked aspects which render this theory useless!!

Clearly Still Under
Development!

• It is possible:

• The speed can be increased 50% more along the straights

• Without distinguishing between straights and turns, the same control

algorithm becomes erratic at corners

• Therefore, need to determine where the corners are, by mapping

the track, either:

• Using Corner Markers

• Using Encoders

Why not just turn the speed up?

Using Corner Markers

• Need to detect markers at point where robot is just starting a new curvature section

• Sensor placement is crucial

• Tried many different sensor placements, but none proved satisfactory, when coming
out of curves, the corner marker was detected too early

Using Encoders

• Forget corner markers altogether, and map track using wheel encoders

• Need to find a way of mapping the track using only the encoder count data from

each wheel

• Save the Δ encoder counts at regular intervals (of time or distance)

• Use these 2 numbers to map the path taken by the robot

Using Wheel counts to map track

The Maths…

Assumptions:

- Travelled along uniform arc-shaped path

- No wheel slip

- Left turn (L<R)

- Constant distance between wheel contact points

Variables:

L – Left encoder count (since last measurement)

R – Right encoder count (since last measurement)

A – Distance between wheels

C – length of track

𝜃 – Angle of curvature (also relates to new heading)

O – Origin of arc

r1, r3 – radii of wheel arcs

r2 – radius of track section

Aims:

Need to find:

- Radius of track section (r2)

In order to plot on-screen:

- Horizontal, and vertical displacement

- Change in heading angle

The Maths…

1) Arc Length Formula

Arc Length: 𝑙 = 𝑟𝜃, hence 𝜃 =
𝑙

𝑟

Therefore:

𝜃 =
𝐿

𝑟1
=
𝑅

𝑟3

𝑟3𝐿 = 𝑟1𝑅

2) Get in terms of r1

Since: 𝑟3 = 𝑟1 + 𝐴…

(𝑟1 + 𝐴)𝐿 = 𝑟1𝑅

𝑟1𝐿 + 𝐴𝐿 = 𝑟1𝑅

𝐴𝐿 = 𝑟1𝑅 − 𝑟1𝐿

𝐴𝐿 = 𝑟1 (𝑅 − 𝐿)

𝐴𝐿

𝑅 − 𝐿
= 𝑟1

One equation with 2
unknowns, need to find

another equation

The Maths…
3) Finding the radius of the centreline

𝑟2 = 𝑟1 +
𝐴

2

𝑟2 =
𝐴𝐿

𝑅 − 𝐿
+
𝐴

2

𝑟2 =
2𝐴𝐿

2(𝑅 − 𝐿)
+
𝐴(𝑅 − 𝐿)

2(𝑅 − 𝐿)
=
2𝐴𝐿 + 𝐴𝑅 − 𝐴𝐿

2(𝑅 − 𝐿)
=
𝐴(𝐿 + 𝑅)

2(𝑅 − 𝐿)

𝑟2 =
𝐴(𝐿+𝑅)

2(𝑅−𝐿)
=

𝐿+𝑅

2
×

𝐴

𝑅−𝐿
for (L < R)

This shows that the radius of the centre line is just the
average of the left and right encoder values multiplied by
the ratio of distance between wheels to the difference in
encoder readings.

Now that we have the formula, it can be written in
the more general case (for a left or right turn):

𝑟2 =
𝐿 + 𝑅

2
×

𝐴

𝑅 − 𝐿

Ensure that L ≠ R, else the radius becomes infinite
(straight line)

– Maybe add a catch before the
calculation to check if this is the case…

𝐴𝐿

𝑅 − 𝐿
= 𝑟1

The Maths…

4) To find the angle of curvature

(Heading Angle):

From Step 1 (Arc Length Formula):

𝜃 =
𝐿

𝑟1

Substituting r1 (from end of step 2):

𝜃 = 𝐿
1

𝑟1
= 𝐿

𝑅 − 𝐿

𝐴𝐿
=
𝑅 − 𝐿

𝐴

Applies in general case (L or R turn)

6) Displacement (starting from facing upwards):

𝑦 = 𝑟2 sin 𝜃

𝑥 = −𝑟2 + 𝑟2 cos 𝜃 = 𝑟2(cos 𝜃 − 1)

5) Side note, the length of the track, can be found, it is trivial:

C = 𝑟2𝜃 =
𝑅+𝐿

2
, hence track length: 𝑛=1

𝑁 𝐶𝑛

Can therefore calculate average speed – very useful to determine if the
mapping approach is working!

- - Note that we haven’t had to use trig. at all - -

So… What can these formulae actually do to help??

Tell Line follower to send encoder data (over
Bluetooth Serial connection) every ##ms, then reset
the values and start counting again

L , R
349, 354
354, 346
332, 360
189, 371
215, 367
345, 360
348, 358
351, 356
311, 357

300, 366
300, 368
300, 369
303, 370

317, 368
324, 356
189, 372
193, 369
184, 370
204, 368
338, 345
354, 228
351, 190
353, 188
355, 184
349, 226
347, 349
354, 335

354, 274
355, 269
355, 258
351, 264
352, 331
241, 368
183, 367
305, 358
347, 363
280, 366
180, 370
279, 365
347, 366
353, 358

352, 343
353, 349
339, 359
199, 369
212, 367
330, 359
348, 363
351, 352
355, 346
353, 354
352, 355
354, 353
335, 334

Convert values from raw encoder readings to mm,
then plot results

So… What does the track look like??

Reasons for error:

1) Distance measured between wheels may not be accurate
Has much more significance when it is a tight turn

2) Encoder pulses to mm conversion may be out

3) Could have wheel slip (although was travelling at relatively
slow ‘search’ speed)

4) Interval between readings was too long

5) Wheels are different sizes

So… What does the track look like??

Loose colour coding
- Very crude colour coding, based upon radius of each curve

For example each colour could have its own speed profile and
control loop parameters

This could be improved by decreasing the interval between
encoder data readings

450mm radius

150mm radius

Possible future developments

• Fully investigate sources of error and try and eliminate these

• Move the formulae into the Line Follower and save to map inside memory

• Actually implement active speed profiles in the robot

• Perhaps ‘snap’ curves to known radii (150, 300, 450mm) and angles (90, 180, 270)

Unanswered problems

• Thin point of contact between wheel and surface

• Good for accuracy

• But is it bad for wheel grip at higher speeds?

• How often to ‘check encoder data’

• Frequently – Could pick up unwanted robot oscillation (putting radii into otherwise straight sections)

• Less often – Smoother output, but may merge features (eg. merge part of straight with sharp corner)

Thank You for Listening...

Any questions

or

suggestions?

