
MINOS 2011 1

Data Acquisition and Analysis
using SPI memory

(with specific reference to the PIC)

MINOS 2011 2

Data acquisition to SPI memory

Why?

 …. Because we can’t trail a cable around the maze without
difficulty and without affecting the performance of the
mouse. The same holds true for any mobile data
acquisition. Other methods of transmiting data have their
own problems…..

How?

1. Write data at each δt to non-volatile memory with an SPI
interface.

2. Upload the data to a PC/laptop for analysis after a run.

MINOS 2011 3

SPI requires 3 lines: SCK, SDO, SDI to transfer bidirectional
data.

If two or more devices share the bus, each device must
have its own select line (CS) – i.e. ‘hard-addressing’.

SPI is therefore a very easy system to implement, either
using software bit-banging, or using the PIC MSSP module.

SPI: Serial Peripheral Interface

MINOS 2011 4

SPI on the PIC18FXXX

Three pins are used for
data transfer:

•  Serial Data Out (SDOx)
 (RC5/RD4)

•  Serial Data In (SDIx)
 (RC4/RD5)

•  Serial Clock (SCKx)
 (RC3/RD6)

Port C is normally used for
SPI - Port D is used on 100
pin devices.

MINOS 2011 5

SPI ‘Data Exchange’ Mechanism

As a data bit is clocked out from the Master into the Slave, a data bit is clocked out
from the Slave into the Master. The Master controls the clock, and so controls the
rate as well as the number of bits clocked out.

MINOS 2011 6

Each MSSP module has four registers for SPI mode
operation. These are:

• Control Register 1 (SSPCON1)

• Status Register (SSPSTAT)

• Serial Receive/Transmit Buffer Register (SSPBUF)

• Shift Register (SSPSR)

The last register is not directly accessible - only the first 3
are used by the programmer.

The PIC18FXXX SPI Registers

MINOS 2011 7

PIC18FXXX Control Registers for SPI

I2C mode only

MINOS 2011 8

Control Registers for SPI

bit 7 WCOL: Write Collision Detect bit

bit 6 SSPOV: Receive Overflow Indicator bit (Slave only)

bit 5 SSPEN: Master Synchronous Serial Port Enable bit

bit 4 CKP: Clock Polarity Select bit

bit 3-0 SSPM3:SSPM0: Master Synchronous Serial Port Mode Select bits
0101 = SPI Slave mode, clock = SCK pin, SS pin control disabled
0100 = SPI Slave mode, clock = SCK pin, SS pin control enabled
0011 = SPI Master mode, clock = TMR2 output/2
0010 = SPI Master mode, clock = FOSC/64
0001 = SPI Master mode, clock = FOSC/16
0000 = SPI Master mode, clock = FOSC/4

(Refer to 18F4520 DATA sheet for more detail)

MINOS 2011 9

Data Transfer Protocols

The SPI protocol as
specified by the
18F4520 datasheet is
simply a byte exchange
protocol.

It functions at the lowest
level of data transfer – 8
bits of data are
exchanged with the
slave.

There is no meaning
attached to the data at
this level.

MINOS 2011 10

Data Transfer Protocols: Higher Level

To interface to other devices using SPI it is most often necessary to implement a
higher-level protocol that uses the byte-exchange mechanism of SPI, but that
strings bytes together into a frame, each byte of which has a specific meaning.

For example, the diagram above shows a byte that corresponds to a Write
instruction, followed by a 16-bit address (2 bytes for high and low), and finally
the data to be written to that address. A program must be written to implement
this higher level command protocol, using low-level SPI functions.

MINOS 2011 11

C18 Compiler Support for SPI

Function Description

CloseSPI Disable the SSP module used for
SPI™ communications.

DataRdySPI Determine if a new value is
available from the SPI buffer.

getcSPI Read a byte from the SPI bus.

getsSPI Read a string from the SPI bus.

OpenSPI Initialize the SSP module used for
SPI communications.

putcSPI Write a byte to the SPI bus.

putsSPI Write a string to the SPI bus.

ReadSPI Read a byte from the SPI bus.

WriteSPI Write a byte to the SPI bus.

The C18 compiler provides a library of C functions to help us to initialise SPI
mode, and to read and write to SSPBUF (G:\MCC18\doc\periph-lib)

MINOS 2011 12

void EE_Init(void)
{

 CSEEPROM = INACTIVE;
 OpenSPI(SPI_FOSC_4,MODE_00,SMPMID); //Set up SPI

}

Example C18 function: OpenSPI()

void OpenSPI(unsigned char sync_mode,
 unsigned char bus_mode,
 unsigned char smp_phase);

SPI_FOSC_4 SPI Master mode, clock = Fosc/4
SPI_FOSC_16 SPI Master mode, clock = Fosc/16
SPI_FOSC_64 SPI Master mode, clock = Fosc/64
SPI_FOSC_TMR2 SPI Master mode, clock = TMR2 output/2
SLV_SSON SPI Slave mode, /SS pin control enabled
SLV_SSOFF SPI Slave mode, /SS pin control disabled

MODE_00 Setting for SPI bus Mode 0,0
MODE_01 Setting for SPI bus Mode 0,1
MODE_10 Setting for SPI bus Mode 1,0
MODE_11 Setting for SPI bus Mode 1,1

SMPEND Input data sample at end of data out
SMPMID Input data sample at middle of data out

General form:

sync_mode

bus_mode

smp_phase

For example, initialising the eeprom:
Idle state = LOW TX on active to idle

MINOS 2011 13

 The Microchip 25XX256 are 256 KBit Serial Electrically Erasable PROMs
with the following features:

–  32,768 x 8-bit Organization
–  64-Byte Page
–  Self-Timed Erase and Write Cycles (5 ms max.)
–  Vcc range 1.8-5.5V
–  Access to the device is controlled through a Chip Select (CS) input.

SPI Serial EEPROM

MINOS 2011 14

Data Transfer Protocol

The 25XX256 contains an 8-bit instruction register. The first byte of a data transfer
sequence will be the instruction.

MINOS 2011 15

Internal Structure of the 25LC256L

MINOS 2011 16

The STATUS REGISTER

Status Register

The Write-In-Process (WIP) bit indicates whether the 25XX256 is
busy with a write operation.

The Block Protection (BP0 and BP1) bits indicate which blocks are
currently write-protected.

The Write Enable Latch (WEL) bit indicates the status of the write
enable latch and is read-only.

The Write-In-Process (WIP) bit indicates whether the 25XX256 is
busy with a write operation.

MINOS 2011 17

READ STATUS REGISTER sequence

The WIP bit in the status register must be checked prior to writing a
byte to ensure a write cycle is not in progress.

The status register is read by issuing the RDSR command (0x05) –
we must wait until WIP is 0 (no Write In Progress) before starting a
byte write operation.

CS => LOW enabling the device
Issue RDSR command (0x05)
Read SSPBUF and test WIP (bit 0)
CS => HIGH [this is optional]

Example command sequence:

MINOS 2011 18

STATUS REGISTER sequences

MINOS 2011 19

•  CS  LOW enabling the device

•  Set the Write Enable latch :
–  Issue the WREN command (0x06).
–  CS  HIGH sets the WREN latch.

•  CS  LOW re-enabling device in write mode

•  Issue WRITE command (0x02)
•  Issue 16 bit address
•  Issue data byte
•  CS  HIGH to indicate byte write sequence is complete, and the

write cycle should now start.

The write cycle takes ~5ms.

Byte Write sequence

MINOS 2011 20

Writing data one byte-write sequence at a time, with the associated 5ms write-
cycle delay, would not be particularly efficient for data acquisition purposes, as we
are normally dealing with streamed data.

The Page Write sequence helps to overcome this.

Byte write sequence

MINOS 2011 21

1 2 3 4 5 6 7

1.  The STATUS instruction
0x05 is sent

2.  The second set of clock
pulses is the read of the
STATUS register (val=0).

3.  WREN instruction 0x06 is
sent

4.  WRITE instruction 0x02 is
sent

5.  MS Byte of the 15 bit
address is sent

6.  LS Byte the 15 bit address
is sent

7.  Data byte sent

Byte Write sequence

MINOS 2011 22

Page Write sequence

A PAGE is 64 bytes – up to one page can be written to the SPI eeprom
before a write cycle must be initiated ………i.e. before CS  HIGH

This is useful as the ~5ms write cycle time will only occur once, after the
64th byte is written.

A page write is achieved by continuing to issue data bytes after the first
one described above while keeping the CS’ pin low.

The page write is efficient because:

Only one address required for 1-64 bytes – the internal address is
automatically incremented

Only one WRITE command required for 1-64 bytes

CS remains low for the entire sequence.

MINOS 2011 23

Page Write sequence

MINOS 2011 24

•  The read sequence is performed in a similar way

•  The RDSR register is checked by issuing the status command (0x05).

•  After the RDSR is checked the CS’ pin must be pulled low enabling the chip.

•  The read instruction (0x03) is sent followed by a 16 bit address which indicates
where to read from.

•  On the next set of clock pulses the data stored at the chosen address is clocked
out of the shift register.

•  The CS’ pin is pulled high to indicate the read is complete.

•  A sequential read can be achieved by continuing to issue clock pulses after the first
described above. As long as CS’ is kept low the EEPROM will auto increment it’s
address pointer each set of pulses and a byte will be shifted out. Sequential reads
will loop back to 0x00 when the address overflows.

Byte read sequence

MINOS 2011 25

Any number of bytes can be read back sequentially from the specified address –
there is no page limit for READ. The internal address is auto-incremented on
each read.

Non-sequential addressing would require a new read sequence for each address.

Byte read sequence

MINOS 2011 26

Speed of SPI EEPROM data transfer

The maximum clock rate for the Microchip 25aa256 is 10MHz.

A one-byte transfer consists of command, address, data = 4 bytes = 32bits.

This gives a nominal rate of 3.2us for 1 byte of data or 312.5 KBytes/second.

However, the 5ms write cycle would reduce this to just under 200 Bytes/sec!

The Page Write lets us write up to 64 bytes before a write cycle is required.

i.e. a page frame would be 64 + command + address = 67 bytes = 536 bits

 53.6 us, which gives 5.054ms for 64 bytes = 12.7KBytes/sec.

This betters RS232 at 115200 baud ….. but it is burst-mode data transfer
rather than continuous. This makes it appropriate for data sampling at greater
than 5ms intervals …..

MINOS 2011 27

SPI FRAM: Ferromagnetic Random Access Memory

 FM25256B : 256Kb FRAM Serial 5V Memory

256K bit Ferroelectric Nonvolatile RAM
• Organized as 32,768 x 8 bits
• Virtually Unlimited Endurance (1014 Cycles)
• 10 Year Data Retention
• NoDelay™ Writes
• Advanced High-Reliability Ferroelectric Process

Very Fast Serial Peripheral Interface - SPI
• Up to 20 MHz Frequency
• Direct Hardware Replacement for EEPROM
• SPI Mode 0 & 3 (CPOL, CPHA=0,0 & 1,1)

Write Protection Scheme
• Hardware Protection
• Software Protection

Wide Operating Range
• Wide Voltage Operation 4.0V – 5.5V

MINOS 2011 28

FRAM Internal Structure

Direct write to
Memory

MINOS 2011 29

Comparison of FRAM vs. EEPROM

Unlike serial EEPROMs, the FM25256B performs write operations at bus
speed - i.e. No write delays are incurred. The next bus cycle may
commence immediately without the need for data polling.

This means no 64-byte page, and no 5ms Write-cycle ……!!

The FM25256B is also twice as fast as the 25AA256 … running at 20MHz,
thereby doubling the burst data rate of the EEPROM and also maintaining
this rate continuously.

For sequential data acquisition, 32Kbytes can be written at full speed, with
no delays.

This gives us a maximum data rate of 2.5MBytes/sec.

The FRAM is pin compatible AND code compatible with serial EEPROM

(Disadvantage?: a price factor of 3X ….)

MINOS 2011 30

FRAM Write and Read Cycles

Memory Write

Memory Read

No Delay, No Write Cycle

MINOS 2011 31

MyTEE-mouse SPI Memory

MINOS 2011 32

Summary

FM25256B SPI FRAM out-performs 25LC256 SPI EEPROM ….

It can be written to at 20MHz vs the 10MHz of the 25LC256
It has virtually unlimited read/write cycles (>1014)
It does not require a 5ms write cycle to complete the write operation

25LC256 SPI EEPROM out-performs FM25256B SPI FRAM …

It has a data retention of > 200 years vs. >10 years for the FM25256B

MINOS 2011 33

There are several layers of software required to use the FRAM for data
acquisition and retrieval.

1. Low-level SPI functions - provided by MCC18 peripheral libraries

2. High-level SPI functions specific to FRAM - written by the user

3. Application-specific functions - written by the user

Using SPI memory with C

MINOS 2011 34

MCC18 provides functions for the initialisation of the SPI interface, and writing or
reading through SPI.

SPI Functions provided by MCC18: Level 1

MINOS 2011 35

FRAM specific functions must be written by the user – the following functions
are provided in FramSPI.INC.

FR_Init : Initialise the MSSP for SPI

FR_WriteEnable : Enable the FRAM for writing data

FR_WriteDisable : Disable the FRAM for writing data

FR_ByteWrite : Write a single byte to FRAM
FR_ByteRead : Read a single byte from FRAM

FR_BlockWrite : Write a number of bytes from PIC memory to FRAM

FR_BlockRead : Read a number of bytes from FRAM to PIC memory

Functions for FRAM on MyTEEmouse: Level 2

MINOS 2011 36

FRAM Application-specific functions: Level 3

•  Transfer of a number of mixed data types to and from FRAM

•  Upload of the record to the PC via the RS232 port.

Issues

FRAM is 8-bit memory

Data must be written one byte at a time

Writing/reading mixed data types (char, int, long etc.) can be messy

Level 3 functions are for:

MINOS 2011 37

0

7 BYTES

START
ADDRESS

SPI write
1 2 3 4 5 6

FRAM

SPI read

We have to maintain the data type information that is held only by association
once the data has been written in byte format.

Streaming bytes and maintaining data type

var1

var5

var2

var3

var4

MINOS 2011 38

Use a STRUCTURE to define the variable names and types

Transfer this as a block of data bytes - this we will call a RECORD

Read the record back into the same structure - this 'rebuilds' the type
information.

We could have a number of functions that each write a specific data type

SPIWRchar() , SPIWRint(), SPIWRlong(), SPIWRfloat() and so on

OR

Streaming bytes and maintaining data type

MINOS 2011 39

CHAR

CHAR

INTLO INTHI

INTLO INTHI

CHAR

0

7 BYTES

START
ADDRESS

SPI write
1 2 3 4 5 6

FRAM

Structure

And back again

SPI read

Streaming bytes from/to a structure maintains the data type information ….

Streaming bytes and maintaining data type

MINOS 2011 40

volatile struct {
 signed int leftpos;
 signed int rightpos;
 signed int v_current;

} record;

If record.leftpos = 0x1234, record.rightpos = 0x1245, record.v_current = 5

The compiler will create the following in memory, starting at &record:

34 12 45 12 00 05 ….. Hexadecimal low-high byte format

i.e. it can be considered as an array of byte values.

Using Structures

Structures and Arrays are closely related –

An array is a collection of variables of the same type referenced under
one name. Arrays are used to keep related information in the same place.

A structure is a collection of variables of different types referenced under
one name. Structures are used to keep related information in the same place.

MINOS 2011 41

volatile struct {
 signed int leftpos;
 signed int rightpos;
 signed int v_current;

} record;

Using Structures

We access the start of the structure using: &record

& is a pointer operator returning the address of the start of the structure

We can determine the length using: recordsize = sizeof(record)

And so we have the start address and length of a byte array.

MINOS 2011 42

•  At each sample time, a RECORD of data is written to FRAM,
using a counted loop (start address and length known).

•  A record counter is incremented  total number of records

•  A memory counter is incremented  total amount of the data

•  When the FRAM is 'full' no more data is written
(could use wrap-around memory)

The files that will allow you to implement this are:

FramSPI.inc : Level 2
FramRecordRW.inc : Level 3 (see next slide)

Continuous data acquisition

MINOS 2011 43

Level 3 functions

void InitRecord()

 initialise the SPI connection to FRAM
 initialise variables

void WriteRecord()
 copy program variables to structure variables
 write the structure to FRAM as a record

 increment pointers and store no. of records

void UpLoad ()
 for all records
 read record to structure
 export structure variables to COM port using printf()

MINOS 2011 44

Controlling the upload

We need some way to control when upload to the PC happens.

MyTEEmouse has push-buttons ……

wait for PB1 or PB2

If PB2 do upload

else run main program

MINOS 2011 45

Level 2 and 3 source code

C source code will be available for download via the micromousonline web site.

DEMO

